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In order to investigate whether the reference frames remaining at rest relative to the expanding system 
of galaxies are also dynamically preferred, McVittie's metric describing exactly the field of a singular mass 
point in an expanding universe is transformed into a suitably chosen coordinate system. Therefore, it is 
found that, in the Newtonian approximation, the potential governing the motion of a test particle is given 
by the sum of a Newtonian gravitational potential and of a cosmic potential which is composed additively 
by a scalar potential and by the scalar product of the velocity of the test particle and of a vector potential. 
Due to it, the total energy of the test particle does not vary if, and only if, it is situated at the origin of a 
coordinate frame remaining at rest relative to the expanding system of galaxies. If the force acting on this 
particle should vanish, the origin of coordinates must coincide with the center of gravity of a field galaxy, 
or of a cluster of galaxies, respectively. If the Hubble "constant" of cosmic expansion varies with the time, 
the conservation law of energy does not hold in our neighborhood with infinite accuracy. The existence of 
the centrifugal and Coriolis forces, appearing also in the case when a single material body is rotating in an 
infinite absolutely empty space, is explained by the hypothesis that this empty space-time is to be con­
sidered for a Minkowski universe, i.e., a world model with infinite total mass and vanishing mean-mass 
density. Other exact solutions of the field equations of general relativity with a vanishing matter tensor 
which are free of singularities, if they actually occur in nature, are to be considered for "self-excited states" 
of the Minkowski universe. This assumption stands in a natural accord both with general relativity, and 
with the relativistic formulation of Mach's principle (expressed in the statement: The space-time does not 
exist without matter). It agrees also with the investigations of Honl and Dehnen who proved that the 
centrifugal and Coriolis forces of correct magnitude appear in every reference frame which is rotating 
relatively to the total mass of the world model, and explains the Thirring forces as the result of the simul­
taneous action of the rotating mass of the near-hollow sphere and of the nonrotating distant mass of the 
Minkowski universe. From the standpoint of the proposed hypothesis, the cosmological constant is to be 
interpreted not as a universal natural constant, but as the Sir multiple of the mean mass density, written 
in a geometrical system of units, of a very strange and highly hypothetical form of matter the density of 
which, due to creation (or annihilation) of matter should remain constant during the expansion (or con­
traction) of the cosmic space. 

INTRODUCTION 

BY a careful examination of observations, Newton1 

felt compelled to introduce into physics the con­
cept of "absolute space which in its own nature, without 
relation to anything external, remains always similar 
and immovable," and in which "absolute, true, and 
mathematical time, of itself, and from its own nature, 
flows equably without relation to anything external." 

In his criticism of the principles of Newtonian me­
chanics, Mach2 rejected Newton's idea that the pre­
ferred position of the inertial frame of fixed stars is a 
consequence of the fact that this frame remains in a 
state of rest or uniform motion in a straight line relative 
to the absolute space, and expressed the opinion that 
the Newtonian absolute motions are to be considered 
as motions relative to the total mass of the universe 
(classical formulation of Mach's principle). 

The notion of Mach's principle was essentially ex­
tended in the general relativity theory due to the de­
pendence of the metric of the space-time continuum on 
the distribution of matter. In his first cosmological 

* Author's address: Praha 2, Na Smetance 16, Czechoslovakia. 
1 Sir Isaac Newton's Mathematical Principles of Natural Phi­

losophy and his System of World, edited by Dorian Cajori (Uni­
versity of California Press, Berkeley, 1960), p. 6. 

2 E. Mach, Die Mechanik in ihrer Entwicklung (F. A. Brockhaus, 
Leipzig, 1897), p. 221 ff. 

paper, Einstein3 believed that, in the complete absence 
of matter, the field equations, supplemented by a new 
cosmological term, will have no solution at all. In such 
a case, it would be possible to formulate Mach's prin­
ciple into the statement: The space-time does not exist 
without matter (the relativistic formulation of Mach's 
principle, equivalent to "Mach-principle 3*" of Pirani's 
paper).4 

In recent years, the relation of general relativity to 
Mach's principle was dealt with by many authors. Now 
there exist, also, other formulations of Mach's principle4 

not as strong as the one stated above. However, re­
cently Brans and Dicke,5 and Honl and Dehnen6 pointed 
out that an analysis of certain physical situations 
seems to testify rather in favor of the absolute space in 
the sense of Newton1 and Locke.7 On the other hand, 
an inquiry into quantum phenomena shows that the 
Minkowskian metric, i.e., the "vacuum" of the quantum 
field theories, cannot be a pure geometrical entity, for 

3 A. Einstein, S.-B. Preuss. Akad. 142 (1917). 
4 F. A. E. Pirani, Helv. Phys. Acta, Suppl. IV, 198 (1956). 
5 C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961). 
6 H. Honl and H. Dehnen, Z. Physik 166, 544 (1962). 
7 J. Locke, An Essay Concerning Human Understanding (James 

Kay Jun. & Company, Philadelphia), Book II, Chaps. 13-17. 
In Chap. 17, Sec. 20 Locke says: ". . . the existence of matter is 
noways necessary to the existence of space, no more than the 
existence of motion, or the sun, is necessary to duration, though 
duration used to be measured by it." 
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it possesses physical properties, too.8 Klein9 regards the 
vacuum as a kind of potential reservoir of all forms of 
matter, "which state, in spite of its relative character, 
may be compared to the absolute space of Newton." 

The aim of the present paper is to show firstly that, 
in accord with the classical formulation of Mach's 
principle, the reference frames kinematically denned as 
remaining at rest relative to the expanding system of 
galaxies (which, since Hubble's discovery of the red 
shift of spectral lines emitted by distant galaxies, 
replaces, in the theoretical considerations, Newton's 
inertial frame of fixed stars) are also dynamically pre­
ferred. Thereafter, we shall prove that Mach's principle, 
in its relativistic formulation quoted above, stands in 
full agreement with all the results of theoretical and 
experimental investigations, if we accept that vanishing 
of the matter tensor does not yet signify the absolute 
absence of matter. 

In this connection, let us note that Mach and Ein­
stein were the first in the history of modern physics to 
reject the concept of absolute space and absolute time, 
but in philosophy they had two great predecessors: As 
early as the end of the fourth century, Aurelius Au-
gustinus10 clearly expressed the opinion that time cannot 
exist without created beings (i.e., in the physical lan­
guage, without matter). In 1710, for the first time, and 
in 1721 at large, Berkeley11 convincingly refuted the 
Newtonian absolute space and absolute motions and 
proposed (in Sec. 64 of his very interesting dissertation 
De Motu) to use, in mechanics, the relative space of 
fixed stars and to define motion and rest relative to this 
space, because these relative motions and this rest can 
be by no means distinguished from the absolute ones. 

PREREQUISITES 

In this section, we sum up the known relations needed 
for investigating the given problems. 

The exact solution of the field equations of the general 
relativity for an expanding world model with a uniform-
and isotropic-mass distribution in which a singular 
point represents an isolated particle with mass m§ was 
found by McVittie.12 Integrating his equation for /*(/), 
the metric computed by him takes, after a slight change 

8 See for instance: W. Heisenberg, Acta Phys. Austriaca 14, 
328 (1961). 

9 O. Klein in Recent Developments in General Relativity (Perga-
mon Press Ltd., Oxford, 1962), p. 293. 

10 S. Aurelii Augustini Confessionum liber XI, cap. XXX, 
(Roma, 1938). 

11 G. Berkeley, A Treatise Concerning the Principles of Human 
Knowledge, Sec. 110-117 (1710). De Motu, Sec. 52-65 (1721). 
[The Works of George Berkeley (Clarendon Press Ltd., Oxford, 
1901), Vol. 1]. 

12 G. C. McVittie, Monthly Notices Roy. Astron. Soc. 93, 325 
(1933). 

of notation, the form 

& 2 = - 1 + ( 1 + •) 
L 2c2rG(f)\ 4Go2/ J 

/ G(/)/Go \ 2 

X( ) (dr2+r2d#2+r2 s inW^2) (1.1) 

\l+kr2/4cGo2J 

rl-(ym0Go/2c2mO)^+kf2/4:Go2y12-]2 

Ll+(yMoGo/2c2rG(t))(l+kr2/4Go2)ll2J 
The constant £ = + 1,0, — 1, corresponding to spherical, 
flat, or pseudospherical space. Go is a further constant, 
representing in the finite models the maximal mean 
radius of the curvature of space. By 7 we denote the 
Newtonian gravitational constant, and by c, the ve­
locity of light. The expansion process is described by 
the dependence G (t) of the mean radius of the curvature 
of space on the time-like coordinate t. 

We now carry out the coordinate transformation 

r=rG(t)/G0, (1.2) 

and express the metric (1.1) in the Newtonian ap­
proximation, i.e., assuming 

ymQ/c2r«l, r2/4G2(t)«l. (1.3) 

In the "Cartesian" coordinates we find 

<fca= _ (l-2&/<?)(dc<?+df+dz2)+ (c2+2<f>+2V)dt2, 
(1.4) 

where (in the three-dimentional vector notation) 

<p(U)=-\IP*, Q(r,t)=-Hi, 
and 

^——ynio/r. (1.6) 

H indicates the Hubble factor of cosmical expansion, 

H=H(t) = G/G, (1.7) 

and the dot denotes differentiation with respect to /. 
The function $ will be called the cosmic potential, for 
it influences the expansion of the material content of 
the cosmic space. ^ is the Newtonian gravitational 
potential of the central body. 

MACH'S PRINCIPLE IN CLASSICAL PHYSICS 

The motions of celestial bodies may be divided into 
two groups. The motions of stars within a galaxy (with 
velocities13 in the range from 10 to 100 km/sec) and the 
motions of galaxies within a cluster of galaxies (ve­
locities13 from 100 to 5000 km/sec) fall into the first 
group, being governed by the Newtonian potential. The 
recession of galaxies represents the second group of 

13 F. Zwicky, Morphological Astronomy (Springer-Verlag, Berlin, 
1957), p. 147. 
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motions described by the empirical law, 

r = # r , (2.1) 

which follows from the redshift of spectral lines emitted 
by distant galaxies, if we explain this reddening of 
photons as a Doppler effect. Assuming Z7=(1010 yr) _ 1 

and the present-day radius of curvature of space of 
some 1010 light-years, we may consider the space to be 
approximately flat to distances of 109 light-years. The 
velocity of expansion amounts here to (c/10). 

On the basis of these empirical data and of the metric 
(1.4) we may apply, in this region of the universe, the 
methods of classical analytical mechanics, taking for 
the Lagrange function of a test body with mass m (i.e., 
of a star, or of a galaxy, or of a cluster of galaxies) the 
relation 

L=T-tn($+V), (2.2) 

in which the kinetic energy T is expressed by the 
classical formula 

T=\mx\ (2.3) 

The cosmic potential <£ determined by Eqs. (1.5) 
describes the background field created by the homo­
geneously and isotropically distributed matter. In 
analogy with electrodynamics it is composed additively 
of a cosmic scalar potential <p(r,/) and of the scalar 
product of the velocity r of the test particle and of a 
cosmic vector potential Q(r,t). The Newtonian po­
tential SF takes into account the local inhomogeneities 
and anisotropy in the actual distribution of matter. In 
the case of the world model investigated by McVittie12 

it is given by Eq. (1.6). An approximate solution of the 
field equations of the relativistic cosmology14 shows that 
in general it is determined by the Poisson equation 

V 2 ^ = 4 7 T 7 ( P - P 0 ) (2.4) 

and by the condition ^ = 0 at the boundary of a suffi­
ciently large region of the universe within which the 
mean mass density equals the mean mass density p° 
of the whole universe. 

With the help of our Lagrange function we now easily 
deduce the equation of motion of a test body: 

(d/dt)(i-Ht)=~H(i-Hr)-gr2id* (2.5) 

or, after having performed the differentiation, 

d2r/dt2 = -qEH- grad^. (2.6) 

Here we have used the formulas deduced from Eq. (1.7) 

H=-{\+q)H\ q=-(d2G/dt2)/GH2, (2.7) 

in which q is called the deceleration parameter. The 
numerical values of H and q are determined by astro­
nomical measurements.15 In Eq. (2.6) H and q are-to 

14 J. Pachner (to be published). 
15 M. L. Humason, N. U. Mayall, and A. Sandage, Astron. J. 

61, 97 (1956); W. A. Baum, ibid. 62, 6 (1957); A. Sandage, 
Astrophys. J, 127, 513 (1958); 133, 355 (1961). 

be considered as two "constants" characteristic for the 
present epoch of cosmic evolution. 

Let us note that Eq. (2.6) with grad ^ = 0 agrees 
with the equation of motion deduced from the em­
pirical law (2.1). Its right-hand side agrees in its func­
tional dependence also with the intensity g of the 
gravitational field computed from Newton's law of 
general gravitation under the assumption of a uniform 
and isotropic distribution of matter: 

g = - ( 4 x / 3 ) T P ° r . (2.8) 

Comparing these expressions, we obtain a relation be­
tween both "constants" H and q and the mean mass 
density: 

2#2=(47r/3)7P°. (2.9) 

For15 # ^ 3 X 1 0 - 1 8 sec"1 and ^ 1 , we get for the mean 
mass density a plausible value p°:=3X10~29 g/cm3. 

The total energy A of our test particle and its change 
AA during the time interval between fa and fa are de­
fined by the formulas16 

A=£(<9L/dg;)g — L , 
i 

A A = - / {dL/dt)dt. 
J h 

Inserting for L the corresponding expressions we find 

A=T+m(cp+^)y (2.10) 

AA=m Ht-(i-Hr)dt. (2.11) 
J h 

From Eqs. (2.5), (2.6), and (2.10), (2.11) we now 
conclude: 

(1) In a world model with a uniform- and isotropic-
mass distribution (where g r a d ^ = 0 ) , every point which 
remains at rest relative to the expanding material con­
tent of the world may be chosen as the origin of a 
privileged reference frame characterized by the follow­
ing two dynamical conditions : 

(a) The total energy A of a test particle situated at 
the origin of coordinates does not vary. 

(b) The force acting on a test particle situated at 
the origin of coordinates vanishes. 

(2) In our universe, where grad SE^O, a reference 
frame remaining at rest relative to the expanding system 
of galaxies (which may be determined by the isotropy 
of the observed redshift) fulfills solely the condition (a). 
Both conditions (a) and (b) are simultaneously satis­
fied, if the origin of the reference frame coincides with 
the center of gravity of a field galaxy, or of a cluster of 
galaxies, respectively. 

16 C. Lanczos, The Variational Principles of Mechanics (Uni­
versity of Toronto Press, Toronto, 1949), pp. 123-124. 
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(3) In a universe with £ M 0 the total energy A of a 
test particle defined by Eq. (2.10) is conserved if and 
only if the particle follows the law (2.1) of general 
cosmic expansion.17 Since, in our neighborhood, the 
law of conservation of energy does not hold with in­
finite accuracy, the concept of total energy which is 
considered as something that should be exactly con­
served18 loses much of its importance as a starting 
point for physical theories. 

MACIFS PRINCIPLE IN GENERAL RELATIVITY 

In the preceding section, we have shown that, in our 
universe, there exist actually certain reference frames 
dynamically preferred not only by the nonexistence of 
the centrifugal and Coriolis forces, but also by further 
effects caused by the recession of galaxies not known in 
the time of Mach. In accord with Newton1 one can, of 
course, object that the existence or nonexistence of the 
centrifugal and Coriolis forces decides uniquely whether 
a single material body in an infinite absolutely empty 
space does or does not rotate relative to Newton's abso­
lute space. Mach2 as a consistent positivist, considers 
this objection to be meaningless and inadmissible, be­
cause nobody is competent to extend the validity of 
our physical laws outside the limits of our experiences. 
Einstein19 tried to explain that effect by the hypothesis 
that inertia depends upon a mutual action of matter, 
but his attempt was not successful.20 

We shall now try to prove that all the discrepancies 
between the empirical facts and the ideas of Berkeley11 

and Mach2 disappear, if we consider the Minkowskian 
metric, which by the limiting process c—» oo falls into 
the Newtonian absolute space with a Euclidean metric 
and into the Newtonian absolute time, not as a "pure 
no thing'' in the sense of Newton1 and Locke7 but as a 
gravitational field created by the uniformly and iso-
tropically distributed infinite mass of the universe with 
a vanishing mean-mass density. 

For this purpose, we start from the field equations 
of the general relativity theory: 

R/-$R5/= ~ (Swy/c2)T/} (3.1) 

into which we insert the metric (1.1) with w 0 = 0 . We 
obtain the following two differential equations for the 
function G(t): 

(G/cG)2+k(l/G)2= (8iry/3c2)T4*, (3.2a) 

17 Compare the relativistic treatment: E. Schrodinger, Ex­
panding Universes (Cambridge University Press, New York, 
1956), pp. 53-64. 

18 Compare in this connection: A. S. Eddington, Relativitats-
theorie in mathematischer Behandlung (Julius Springer-Verlag, 
Berlin, 1925), p. 197; A. Trautman, Bull. Acad. Polon. Sci. Classe 
III . 5, 721 (1957). 

19 A. Einstein, Ann. Physik 43, 818 (1916); Ref. 3; A. Einstein, 
The Meaning of Relativity (Princeton University Press, Princeton, 
1953), 4th ed., p. 100. 

20 See, for instance, H. Dehnen, H. Honl, and K. Westpfahl, 
Ann. Physik 6, 370 (1960). 

2(d2G/dt2)/c2G+ (G/cG)2+k(l/G)2= (Swy/c2)T^ 

( f = i = l , 2 , 3 ) . (3.2b) 

The investigation of the lattice universe introduced 
by Lindquist and Wheeler21 and developed further by 
the author22 shows that the component TV of the 
matter tensor is to be interpreted as the mean-mass 
density p° in the cosmical space: 

7 Y = $ 4 4 P ° ( G ) . (3.3a) 

The well-known condition 

ZV;,= 0, (3.4) 

guarantees the compatibility of Eqs. (3.2a, b) and gives 
us a formula determining the functional dependence 
of T/ 0*5*4) o n G : 

T/=8/W+(G/3)(dpf>/dG)l, ( M ^ 4 ) . (3.3b) 

A special world model is the finite Friedman universe 
defined by the condition that its total mass M is 
constant and finite: 

M = M 0 = a finite const. (3.5) 

The mean-mass density at the maximal expansion of 
the space follows from Eq. (3.2a): 

(p%=(3c2/8Try)(l/Go)2. (3.6) 

Since the universe has at this moment the volume 
27r2G!o3, its total mass Mo is given by the formula 

M0=27r2Go3(p°)o= (3<irc2/4y)G0. (3.7) 

Combining Eqs. (3.6) and (3.7), we find 

p o ^ ( 2 7 T C 6 / 1 2 8 7
3 ) (1/MO)2 . (3.8) 

I t follows that a world with a vanishing mean-mass 
density must have an infinite total mass. Correspond­
ingly, Eq. (3.7) shows that the volume of the world 
would contract to zero, if the total mass contained in 
it vanished. 

A short discussion of the foregoing well-known rela­
tions shows thus, that there exists only one static 
world model [ G = 0 , G(t) = Go= oo, &= + l ] . Its mass 
density, total mass, and the components of the matter 
tensor are determined by Eqs. (3.6), (3.7), and (3.3a, b), 
respectively : 

p o = o , M= oo, r / = 0 . (3.9) 

The world models satisfying the conditions (3.9) are 
called Minkowski universes. The Minkowski universe 
with the Minkowskian metric is considered to be in its 
ground state, because, as a limiting case of the Friedman 
universe, it corresponds to a uniformly and isotropically 
distributed matter. There are known, of course, further 
exact solutions of the field equations (3.1) with vanish-

21 R. W. Lindquist and J. A. Wheeler, Rev. Mod. Phys. 29, 
432 (1957). 

22 J. Pachner, Acta Phys. Polon. 19, 663 (1960); Ann. Physik 8, 
60 (1961). 
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ing matter tensor which are free of singularities. As an 
example, we refer to Robinson's gravitational wave,23 

a special case of which is the "anti-Mach metric" of 
Oszvath and Schucking.24 The existence of these solu­
tions does not contradict our hypothesis that the 
space-time cannot exist without matter: We have to 
consider these solutions as the " self -excited states" of 
the Minkowski universe. Since not all solutions of, for 
instance, the potential equation of electrostatics, and 
not all elementary particles compatible with Wigner's 
classification25 are realized in nature, a similar question 
now arises as to which of the self-excited states can 
actually exist in our universe.26 

Our inference that the Minkowski metric cannot 
belong to an infinite absolutely empty space-time con­
tinuum agrees with the relativistic formulation of 
Mach's principle stated in the introduction, and will be 
further strengthened by considering the metric field 
due to the smoothed-out matter of a finite mass which 
is uniformly and isotropically distributed over a finite 
volume. The field equations (3.1) give us two quite 
different solutions: If we admit the existence of the 
space-time continuum, i.e., the existence of, at least, 
one metric with detgM„<0, only in the region occupied 
by matter, we obtain Friedman's oscillating model of a 
finite universe. However, if the space-time may exist 
also in the domain where all the components of the 
matter tensor vanish, we find the inner and outer 
Schwarzschild solution. Since McVittie's metric (1.1) 
with G(/) = Go=°° becomes identical with Schwarz-
schild's outer metric written in isotropic coordinates, 
the uniqueness of the solution will be reinstated if we 
ascribe the Schwarzschild field to an isolated mass-
point situated in the Minkowski universe. 

The investigations of Honl and Dehnen6-27 proved 
that the centrifugal and Coriolis forces of correct mag­
nitude appear in every reference frame which is rotating 
relative to the total mass of the world model. If we 
now wish to explain why the Thirring forces28 are pro­
portional to the ratio of the gravitational radius of the 
hollow sphere to its geometrical radius, we must admit 
that they result from the simultaneous action of the 
rotating mass of the near hollow sphere and of the non-
rotating distant mass of the Minkowski universe for 
which the above ratio equals (ST/4) [see Eq. (3.7)]. 

2 3 1 . Robinson, Lecture at King College, London, 1956 (un­
published); F. A. E. Pirani, in Recent Developments in General 
Relativity (Pergamon Press Ltd., Oxford, 1962), p. 89 ff. 

2 4 1 . Oszvath and E. Schiicking, in Recent Developments in 
General Relativity (Pergamon Press Ltd., Oxford, 1962), p. 339 fL 

25 E. P. Wigner, Ann. Math. 40, 149 (1939). 
26The author likes to recall Infeld's words: "There is little 

sense in considering radiation without sources." [L. Infeld and 
J. Plebanski, Motion and Relativity (Pergamon Press Ltd., Oxford, 
1960), p. 166.] 

27 H. Dehnen, Z. Physik 166, 559 (1962). 
28 H. Thirring, Phys. Z. 19, 33 (1918); 22, 29 (1921). L. Bass, 

and F. A. E. Pirani, Phil. Mag. 46, 850 (1955). H. Honl and A. W. 
Maue, Z. Physik 144, 152 (1956). Compare also: Ch. Soergel-
Fabricius, Z. Physik 159, 541 (1960); H. Honl and Ch. Soergel-
Fabricius, ibid. 163, 571 (1961). 

Note added in proof. It follows (1) that it was an 
unproved assumption to suppose that in the absolute 
absence of matter the space-time can further exist and 
possess the Minkowskian metric, and (2) that the po­
tential reservoir of all forms of matter (in the sense of 
Klein's considerations)9 is in fact the gravitational field. 
Mach was thus in the right when he refuted an un­
critical extension of the validity of the known physical 
laws over the limit of our experiences. 

ON THE PHYSICAL INTERPRETATION OF 
THE COSMOLOGICAL CONSTANT 

Before concluding this paper, we have to show how 
the cosmological constant is to be interpreted if the 
hypothesis that only the matter creates the space-time 
continuum (i.e., the gravitational field, for both terms 
are merely two aspects of the same physical entity) 
should have a general validity. 

In the de Sitter universe, the metric field described 
by Eq. (1.1) with m0=0 and 

fcoshi r + n 
G(f)/Go=< exp \ct{X/3)ll\ k=] 0 , 

[sinhj [ - l j 

if H\ = L(\/3)1/2 (4.1) 

is in fact created by the cosmological constant (which, 
as McVittie29 noticed, is a constant of integration). 
Since it is certainly absurd that a universal natural 
constant might create a physical field, we identify the 
cosmological term with the matter tensor: 

r/-(c2/7)(X/87r)5/. (4.2) 

If we interpret its T^ component, as usual, as the 
mean-mass density of matter, we must consider (K/Sw) 
to be the mass density expressed in a geometrical system 
of units.21 This mass density should have, however, the 
very strange property of remaining constant and being 
influenced neither by expansion nor by contraction of 
the universe. From this standpoint, the de Sitter uni­
verse with £=0 is thus identical with the steady-state 
universe. 

This interpretation does not contradict Eq. (3.3b) 
determining other components of the matter tensor, 
but differs essentially from that of McCrea30 who as­
sumed (in agreement with the classical interpretation) 

r1i=r2
2=r3

3=-#A2 

and admitted at the same time the existence of a uni­
form negative pressure throughout the space. 

Since the creation process, if it actually occurs, is 
certainly a quantum process, we should abstain from 
every premature classical interpretation of the com­
ponents of the matter tensor, taking for granted only 

29 G. C. McVittie, General Relativity and Cosmology (Chapman & 
Hall, London, 1956), p. 35. 

30 W. H. McCrea, Proc. Roy. Soc. (London) A206, 562 (1951)-
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the identification of 7Y with the mass density, and 
admitting in our relativistic treatment that the total 
mass of the universe might depend on the mean radius 
of curvature of its space.31 We may interpret this de­
pendence either as the creation of matter possessing 
invariable gravitational properties, or as a variation of 
the gravitational properties of matter (in the sense of 
mutual action of matter proposed by Einstein)19 the 
total quantity of which remains constant in the uni-

31 Consequences of the assumption that the mean-mass density 
varies as the function p=pi(Gi/G)3+n, pi being the density at the 
radius Gi, and n a real constant, are investigated in J. Pachner, 
Acta Phys. Polon. 23, 133 (1963). 

I. INTRODUCTION 

THIS paper is an attempt to answer some questions 
suggested by a recent study of special relativistic 

invariance in Hamiltonian particle dynamics.1'2 This 
study has emphasized two distinct aspects of relativistic 
invariance. The first of these is the symmetry of the 
theory under the inhomogeneous Lorentz group, re­
flecting the principle of special relativity that the laws 
of physics should be invariant under transformations 
of reference frames. This symmetry is guaranteed by 
postulating the existence of ten infinitesimal generators 
H, P, J, K, for time translations, space translations, 
space rotations, and pure Lorentz transformations, re-

*. Supported in part by the U. S. Atomic Energy Commission. 
f On leave of absence from the Atomic Energy Establishment, 

Trombay, Bombay, India. 
1 D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. 
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verse. The latter variation is caused by the variation 
of the mass of matter, in contra-distinction to the 
hypothesis of Dirac32 who assumed a dependence of the 
gravitational " constant'' on the radius of the universe. 
Whether such variations do occur in our universe or not, 
only experience can decide. The recent observations of 
Ambarzumian,33 who found that the central regions of 
certain galaxies are the sources of an intensive emana­
tion of matter, indicate that such a possibility can­
not be a priori excluded. 

32 P. A. M. Dirac, Proc. Roy. Soc. (London) A165, 199 (1938). 
33 V. A. Ambarzumian, Voprosy kosmogonii, torn VIII (Moscow, 

1962), pp. 21-23. 

spectively, satisfying the bracket equations 

[Py,P*] = 0, [Py,F]=0, [/*,ff]=0, 

[Ji,Kj] — eijicKk, [KjJEL] = Pj, 

iKifol^-eaiJk, ZKM = 6jhH (A) 

which are characteristic of the inhomogeneous Lorentz 
group.1,3 (We choose units in which h—c= 1. The sum­
mation convention is used for the indices i, j , &= 1,2,3. 
In classical mechanics the brackets are Poisson brackets. 
In quantum mechanics they are commutators divided 
by L This notation is maintained throughout the 
paper.) 

The second aspect involves the explicit transforma­
tion properties of space-time events and gives the 

3 P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). 
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An examination is made of the consequences for the quantum mechanics of spinning particles of equations 
characteristic of Lorentz-covariant position variables. These equations are commutator analogs of the 
Poisson bracket equations that express the familiar transformation properties of space-time events in 
classical mechanics. For a particle of zero spin it is found that the usual canonical coordinate is the unique 
solution of these equations. For a particle with positive spin there is no position operator which satisfies 
these equations and has commuting components. For a particle and antiparticle there is a unique solution 
with commuting components which is valid for all values of the spin and reduces for zero spin to the canonical 
coordinate. For spin i this is the Foldy-Wouthuysen transform of the position operator of the Dirac equa­
tion. A generalization of the inverse Foldy-Wouthuysen transformation, valid for any value of the spin, 
appears as a unique unitary transformation which takes this generalized Dirac position to the canonical 
coordinate. The application of this transformation to the canonical form of the Hamiltonian gives a gen­
eralization of the Dirac equation Hamiltonian. This is developed and compared with the literature for spin 1. 
It gives a nonlocal equation as the spin 1 analog of the Dirac equation. 


